Learning About Transistor Biasing

Demo Design Specs.:

Vcc = 6

LED = 1.7v @20mA

Driving from Arduino Digital I/O @ 5v (40mA max).

Figure 1: Our circuit in Multisim with the calculated values,

STEP 1: Compute value of our base

resistor (R_b). This resistor controls current into the transistor to keep it from burning up. So always use one!

- 1. Design with these specs to drive the transistor into saturation.:
 - The output of the Arduino pin is **5V**.
 - The transistor needs ~.7V to turn on just like a diode.
 - Let's limit base-emitter current (I_{BE}) to 5mA (.005A) to protect the Arduino.
- 2. Therefore, the base resistor value is:

 $R_b = \frac{5v - .7v}{.005A} = 860Ω$. We can use a **1KΩ** because it is a more common value.

3. The simulation confirms a base voltage of 799mV (.79V) @ 4.20mA which is within our limit of 5mA when $R_b = 1K\Omega$.

STEP 2: Calculate value for current limiter resistor for the LED.

- 1. According to the datasheet, the voltage from collector to emitter is about ~200mV or .2v when the transistor is saturated or turned on all the way. See table below.
- 2. The LED draws 1.7v and 20mA, the $V_{ce(sat)} = 0.2v$, and the $V_{cc} = 6v$. So that leaves 4.1v (6v 1.7 .2v) that the limiting resistor must drop. Therefore:
- 3. $R_{LED} = \frac{4.1v}{.020A} = 205 \text{ so } 220\Omega \text{ is a safe value.}$
- 4. At 220Ω , $V_{LED} = 1.9v$ @18.6mA (in Multisim).

STEP 3: Calculate power rating for R_{LED}.

- 1. From Ohm's law, Power watts = I^2R .
- Power consumed by the $R_{LED} = .02^2 \times 220\Omega = \underline{.09W}$.
- 3. So, what wattage resistor do we need? Well, since ¼ watt = .25, that should work fine.
- 4. Use a 220 Ω ¼ watt or ½ watt resistor.

Title: STUDY GROUP LESSON 8: How to Use a Transistor as a Switch Biased for Saturation						
2N3904 Used to sink LED to ground (Q1 supplies a connection to ground or B-).						
Designed by: Ron Kessler	Document N: 1	Revision: 1				
Checked by:	Date: 10/21/2022	Size: A				
Approved by:	Sheet 1 of 1					

CHARACTERISTICS

T_{amb} = 25 °C.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{CBO}	collector-base cut-off current	V _{CB} = 30 V; I _E = 0 A	_	50	nA
I _{EBO}	emitter-base cut-off current	V _{EB} = 6 V; I _C = 0 A	-	50	nA
h _{FE}	DC current gain	V _{CE} = 1 V; note 1			
		I _C = 0.1 mA	60	_	
		I _C = 1 mA	80	_	
		I _C = 10 mA	100	300	
		I _C = 50 mA	60	_	
		I _C = 100 mA	30	_	
V _{CEsat}	collector-emitter saturation voltage	I _C = 10 mA; I _B = 1 mA; note 1	_	200	mV
		I _C = 50 mA; I _B = 5 mA; note 1	_	200	mV

Figure 2: Partial datasheet for 2N3904 used to compute currents