
Spring 2019

Introduction to capturing data frames

Ron Kessler
UCI ANTEATER RACING

2014 Jeep

Overview

This report is designed to introduce you to

the way automobiles send and receive

messages from the numerous sensors and

actuators that control our vehicles. Modern

cars use Controller Area Networks (CAN) to

monitor and manage numerous control

systems.

Figure 1: Here is a captured can frame. Notice

the CAN-H (Blue) and CAN-L (Red) are mirror

images of one another. When the CAN lines

are not transmitting, we say they are in a

recessive state. During this time, both data

lines are very close to 2.5VDC. This lets the

controller know the bus is in the recessive

state. You can see there are several recessive

states in this frame. The recessive state is

interpreted as a logical 1.

When the bus is sending data, the CAN-H

signal moves up to about 3.5VDC and the

CAN-L drops to about 1.5VDC which is a

difference of about 2 volts. CAN uses these

differences in voltage to decode the data.

When the CAN-H is at 3.5 and CAN-L is at 1.5

this is interpreted as a logical 0 and is called

the dominant state.

Here are some close-up images. You can see the binary values of each packet as they are decoded.

Do you see those diamond shapes in this image? It turns out that when Robert Bosch invented CANBUS, he wanted the protocol to be able to detect wiring

problems. He wanted the bus to be able to detect whether a can wire was shorted to ground or somehow shorted to battery voltage. If one of the wires was

shorted to ground, then the signal would contain logic zeros and be useless information.

To solve this, the CAN protocol looks for a stream of five 0’s or 1’s in a row. If it detects five low bits, it inserts a special bit on its own. Those bits are shown here

as grey diamonds. When the stream of data is received and it contains five 0’s AND the special bit, the computer knows that the stream of 0’s is in fact, good

data. If the wires were shorted to ground, the special bit would not be transmitted and the computer would know the data is not accurate. In this way, the

protocol can determine good data from ‘noise’ or junk. The process of adding these bits is called ‘bit stuffing’. It is a clever way to know if real data that contains

long streams of 0’s (or 1’s) is valid.

