PICOSCOPE 6 AUTOMOTIVE DIAGNOSTICS

CANBUS Demo Board Decoding Example

The orange byte is the packet ID (50 Dec $=0 \times 32 \mathrm{Hex}$)
The green is not used.
The purple packets are the data.
The light blue section is the CRC check.
The orange bit at the end of the packet is the ACK bit.

RPM Data:
The first blue packet $=0$.
The second blue packet $=224(11100000)$
TEMP Data in Celsius:
The third blue packet $=30(00011110)$

The fourth blue packet $=3(00000011)$
The fifth blue packet $=151(10010111)$
Note: ${ }^{\circ}$ symbol is ALT 248

RPM Data

The first and second blue packets are RPM data. To decode them we would:

- Get the MSB which is 0 . So in this case $0 \ll 8=0$.
- Get the LSB which is 224.
- Use OR logic to combine the two bytes: 0 | $224=224$ which is the RPM on my LCD.

Another example. Suppose RPM $=340$. Now it requires decoding 16 bits.

- The Data packet shows 184233145000
- The first two bytes are RPM.
- Get MSB which is 1 . So, $1 \ll 8=256$.
- The LSB is 84 . Use OR logic to combine the bytes: $256 \mid 84=340$.

Temperature Data

Packet $3=$ Temp. $=30^{\circ} \mathrm{C}$.
So, to decode it we use $1.8 * 30+32$ to get ${ }^{\circ} \mathrm{F}=86^{\circ}$

Voltage Data

Packets 4 \& 5 represent battery voltage. In this case, 9.19VDC.
To encode or package up the voltage:

- Multiply value * 100 to remove decimal. 9.19 * 100 =919.
- Now split 919 into two 8-bit bytes
- Make the MSB. 919>>8 $=3$
- Make the LSB. 919 AND $255=151$
- Send the values 3,151 as two separate bytes over the bus.

To Decode:

- Grab the MSB first: $3 \ll 8=768$
- Use OR logic to combine the MSB and LSB: 768 | $151=919$.
- Now divide our decoded value by $100: 919 / 100=9.19$ which is our original value!

SUMMARY

In summary, when two bytes are encoded to transmit values >255, we right-shift the original value 8 bits. So if RPM $=650$, the $M S B=650 \gg 8=2$.
Then the LSB is encoded by again, using the original RPM of 650 , we AND it with 255 (0xFF). So, $650 \& 255=138$. So 2 would be transmitted first followed by 138.

At the receiving end, these values are decoded. The MSB is retrieved by LEFT shifting the first value (2 in this case) 8 bits. So, $2 \ll 8=512$.
The LSB is just the second value of 138 . We then OR these two numbers and get our original value of 650 . So $2 \mid 138=650$ which is our original value that we transmitted in the first place.

Encoding the MSB: Right-Shift 8 bits.
Decoding the MSB: Left-shift 8 bits
Encoding LSB: AND with 255.
To decode: Left-Shift MSB 8 bits then OR with LSB.

