UCI STUDY GROUP (2021)

WORKING WITH VOLTAGE DIVIDERS

"A voltage divider is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (V1). Voltage dividers are used to make signal level adjustments, for active device and amplifier bias, and for measuring voltages.

Ohm's Law explains the relationship between voltage, current, and resistance by stating that the current through a conductor between two points is directly proportional to the potential difference across the two points.

Figure 1: Simulation of simple voltage divider with NO load. Voltage is half the Vin.

A law is relating the voltage difference between two points, the electric current flowing between them, and the resistance of the path of the current. Mathematically, the law states that $V=I R$, where V is the voltage difference, I is the current in amperes, and R is the resistance in ohms. For a given voltage, higher resistance entails lower current flow." (Digi-Key Electronics)

Figure 1 shows a basic divider circuit without any load. Notice both resistors are the same value. In this situation, the output voltage is always $1 / 2$ of $V 1$ under NO LOAD. This holds true for any resistor value pairs. The resistor values of R_{1} and R_{2}, are chosen to limit current in the output. Higher values equates to lower current and visa versa since Ohms law states current $I=\frac{E}{R}$.

But what happens when we do have a load connected? Well, Figure 2 shows a circuit but with a load (R3) connected. This is because R_{2} and R_{L} are connected in parallel.

Whereas resistors in series form a total resistance that equals their sum, resistors in parallel combine to reduce the total resistance. This is called equivalent resistance. The total resistance is always less than the smallest resistor. In our case we only have two resistors so, equivalent resistance is calculated with this formula: $\mathrm{R}_{\mathrm{EQ}}=\frac{100 \times 1000}{1100}=90.9$ ohms.
Therefore, $\mathrm{R}_{2}| | \mathrm{R}_{3}$ in parallel is equivalent to an R_{2} of 90.9Ω instead of the 100Ω. This explains why the Vout is less than the 10 volts we would expect with two equal value

Figure 2: Simulation WITH a load. Notice the change in voltage. $R 2$ and $R L$ are in parallel which lowers the equivalent resistance. resistors. When resistors in parallel are shown in formulas, they are denoted like this: $R_{2} \| R_{L}$ where the "||" symbol means "in parallel with".

When more than 2 resistors are in parallel, we use this formula: $\quad R T=\frac{1}{\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}}$ When only 2 resistors are in parallel, use this formula: $\mathrm{R}_{\mathrm{EQ}}=\frac{R 1 \times R 2}{R 1+R 2}$

Fortunately, there are online calculators that compute this for us.

Look at the circuit in Figure 3. I want you to see the steps taken to analyze this circuit. I also show how this circuit wastes a lot of energy. We will see how to fix that very soon.

1. Now, R2 \& R3 are in paraliel so the equivalent resistance will be lower than the smallest value resistor: So it will be less than 100 ohms.
2. Calculate the equivalent resistance or R2\|R3. The "||" means in parallel with":

Resistors in parallel formula $=1 /[1 / R 2+1 / R 3]=1 /[1 / 100+1 / 1000]=1 / 01+001=909$ ohms:
3. Vout $=$ Vin ${ }^{*}$ [Requiv]/R1+Requiv] That means Vout $20 \times[909 / 909+100]=9.52 V$
4. When the R3 load is at least $100 x>R 2$, the Vout does not change so much If $R 3$ was 10 ohms, Equivalent resistance is now $1 /[1 / 100+1 / 10]=9090 \mathrm{hms}$
5. Now, Vout $=20 \times[9: 09 / 909+100]=167$ volts. If the load is 10 K, Vout $=9.95$!
6. Total current in the circuit $=$ V/R or $20 /[90.9+100]=\sim 104 \mathrm{~mA}$

The current through $R 3=952 / 1000=9.5 \mathrm{~mA}$ The load is pulling only 9% of the $V 1$ so a lot of current is wasted and goes up in heat and runs down the battery..

Figure 3: Equivalent resistance for R2 and R3 wastes energy.

Figure 4 shows how to make the circuit more efficient by simply replacing R_{2} with the 1 K load device (R_{3}) as shown. This not only simplifies the circuit, but it also uses significantly less current.

1. Now, our calculations are simplified: Vout $=\operatorname{Vin}[1 \mathrm{~K} / 1 \mathrm{~K}+100]=20(.909)=182$ volts
2. Calculate the total current: $1=\mathrm{V} / \mathrm{R}$ so $1=20 / 1100=18.2 \mathrm{~mA}$
3. Calculate current consumed by $R 3: \mid=18.2 / 1000=18.2 \mathrm{~mA}$ So all of the current supplied by the battery flows through the load and we have a very efficient circuit.

Voltage Dividers with Three Matching Resistors

There are many situations where we need two different voltages from our divider. The 555 timer is such an example. When we discuss the 555 timer IC, you will discover how clever this divider is used to monitor the charge across a capacitor.

Try to picture a situation where you have a 9 v power source and you need 6 v to power a servo and 3 v to power a sensor board. Rather than adding a large power supply to your project, you can use a voltage divider configured like the one in Figure 5. A word of caution. Never use a divider to supply high amounts of current. These are perfectly suited to working with Arduino projects and other low voltage, low current circuits. Resistors are not efficient, they convert energy into heat, and cannot regulate voltage if the Vin goes up or down. These never take

Figure 5: Three identical resistors can be used as a 1/3 and $2 / 3$ voltage divider when two different voltages are required. the place of a linear regulator! This configuration divides the $\mathrm{V}_{\text {in }}$ into thirds. The 9 v supply provides 6 v and 3 v for you project needs. Let's figure out how this works in more detail.

In previous discussions, we learned that in series circuit, the current that flows through each component is the same. There is only one path for it to flow. However, the voltage across each resistor is related to the resistor's value. When all the resistors are the same value, then the voltage across them is equal and the $\mathrm{V}_{\text {in }}$ is divided equally across them. Also, the total resistance $=R_{1}+R_{2}+R_{3}$ which equals 3 K in this case. The total current in the circuit is therefore $\mathrm{I}=9 / 3000=$.003 A or 3 mA as shown in Figure 5.

Since $V=I R$, the voltage across each resistor $=.003 \mathrm{~A} \times 1000 \Omega=3 \mathrm{v}$. The voltage law says all voltages applied to a circuit are consumed by the components. Take your voltmeter and place the probes across each individual resistor and you will read $3 v$. Since R_{1} drops $3 v$ we read $9-3$ or $6 v$ at the bottom of R_{1}. We read $3 v$ at the top of R_{3} because $R_{1}+R_{2}=6 K \Omega$ and thus twice as much voltage is consumed.

