

HOW TO DECODE IR SIGNALS
TO CONTROL A WALKING
MACHINE
UCI Walking Critters Project 2020-21 (version 3)

Ronald P. Kessler, Ph.D.

Ve

P a g e | 1

Table of Contents
INTRODUCTION ... 2

Statement of the Problem .. 2

Understanding IR Streams .. 3

Creating a Binary Stream of Bits from a Decimal Number ... 6

Decoding IR Streams: Example Oscilloscope Patterns .. 7

APPENDIX A. Bit patterns for standard directional control .. 8

APPENDIX B. Sony IR codes for standard remote buttons ... 9

APPENDIX C. Microcontroller Code Examples for a Simple IR Controller .. 10

Parallax Basic Stamp 2 Version ... 10

Basic Stamp 2 IR Wiring Setup for Oscilloscope ... 11

Arduino UNO Version .. 12

P a g e | 2

INTRODUCTION
Welcome to the UCI Walkers research project for 2020. Graduate students in the mechanical

engineering department have been busy building two and four-legged walking machines. They are

affectionately called “Critters”. You can see some in action here. The goal of the project is to introduce

students to the theory and application of 4-bar linkages.

This mechanical design can be used as a “leg” on a critter

to make it walk.

In the animation, the point at the bottom of the triangle

piece represents the “foot” and the purple line shows the

curving motion the foot takes. This is called a coupler

curve. The foot moves in a straight line just like our feet

move when we walk. Then, just as we do, the foot is lifted

and thrust forward until it contacts the ground again.

While the foot is in contact to the ground it propels the

critter along its path. The trick is to make it walk in a

realistic and stable way. To view some real-life

applications of linkages, click here.

Statement of the Problem
As you might imagine, designing and manufacturing a walking critter is a big challenge. There are several

versions of linkages to choose from. However, making one of these critters turn is even more difficult.

My hypothesis was “can motion and turning used in robotics be adapted to the critter under

construction”? To test this idea, a Sony® TV remote control, Infrared Sensor, and Arduino Uno

microcontroller were configured to allow the user to move the critter forward, backwards, left, and

right. The good news was that it can! The rest of this report will focus on how the IR signals from the TV

remote can be decoded and not on the actual design and construction of the critters themselves.

IR streams are not that dissimilar to other wireless technologies such as Bluetooth. To the computer, the

data is just an organized package of binary bits. The IR energy spectrum (Figure 1) is outside the visible

light spectrum and is at a lower frequency than red light. That is why humans cannot see it.

Now, let’s take a closer look

at how the pattern of

electrical signals can be

decoded.

Figure 2: IR Radiation in relation to visible light & electromagnetic spectrum.

Figure 1: Example of 4-Bar linkages used to make a
leg for the walkers.

https://www.youtube.com/watch?v=3XjBY6ySzfY
https://hackaday.com/2017/03/29/marvelous-mechanisms-the-ubiquitous-four-bar-linkage/

P a g e | 3

Understanding IR Streams

When the Sony® IR transmitter

sends a signal from the remote, a

series of 12 bits is streamed to the

receiving device. The IR operates

on a frequency of 38.5Khz. When

nothing is being transmitted, the

output of the sensor is high (5 volts). As soon as a signal is sent, the IR sensor voltage drops to zero. The

first bit is the widest and represents a “start bit”. You can see in Figure 4 that the width of that pulse is

2.4ms. Then the next seven (7) pulses represent the actual code for the key that was pressed.

The remaining five pulses contain a binary value that specifies whether the message is intended for a TV,

VCR, CD, or DVD player. It is important to note that the least significant bit (LSB) is sent first (Little

Endian).

The Sony IR protocol is

based on a pulse-width

signal coding scheme. The

width of the pulse

determines its binary

value. A .6ms or (600µs)

pulse equates to a logical

0 and a 1.2ms (1200µs)

pulse defines a logical 1.

Not all companies use the

same protocol, so it is

important to know the

coding scheme for the TV

remote you happen to be

using.

Figure 4: IR 12-bit Packet. The wide pulse is ~2.5ms and is called the Start Bit.

Figure 3: IR Transmitter/Receiver Model

P a g e | 4

Figure 5 summarizes the format

of a typical packet. We will only

be concerned with bits 0-6

because those define the

direction keys on the TV remote.

Image from IR Remote for the Boe-

Bot version 1.1 by Andy Lindsay,

Parallax

In figure 6, we can see the width of a low (logical 0) bit is approximately .6ms wide.

Figure 5:Timing of pulses in a typical IR packet

Figure 6: The narrow pulse is ~.6ms wide and is a logical 0

P a g e | 5

In Figure 7, we can see the width of a logical 1 bit is approximately 1.2ms wide.

1.2ms width bit = logic 1

Figure 7: Logic High bit is 1.2ms wide

P a g e | 6

Creating a Binary Stream of Bits from a Decimal Number
Before we can decode any data stream between devices, we must make sure we understand the binary

numbering system. Since electricity has only two states (on/off), computers and other devices were

designed using this numbering system.

Look at figure 8. Before we can transmit/receive IR data, we must package up our values to be in binary

format. Assume the Channel UP button on my remote sends the code 53 in decimal. The number 53 =

00110101 in binary. Binary works just like turning a light switch on or off in your home. There are only

two choices: on or off. There is not any in between. Look at the purple row below. Each box represents

bit (binary digit).

There are eight (8) bits which

makes up one (1) byte. The first

purple box on the right is the

called the least significant bit

(LSB). Think of this as the 1’s

column. The first purple box on

the left is the most significant bit

(MSB).

The decimal row shows the value

of each column. As you can see,

there is a “1” in the 32 column, a “1” in the 16’s column, a “1” in the 4’s column and a “1” in the 1’s

column. If we add these values up, (32+16+4+1 = 53), we get the decimal equivalent of a binary number.

When we press a button on the remote, each button has a code from the factory just like your keyboard

does. When you type “A”, it is converted to the number 65. The “B” key = 66, and so on. So, if I press

Channel Up on a Sony remote, the number 16 is transmitted to the IR receiver. However, the number 16

must first be converted into its binary equivalent and each individual bit must be transmitted in exactly

the correct order. If we use Figure 8 as a reference, the number 53 must be transmitted as 00110101.

You can clearly see this in Figure 7. The string of pulses is called a stream.

Next, we will look at the oscilloscope images and see if can decode the stream. Keep in mind, we are

looking at the width of the pulse that is a logical 0. This means, the light switch is off for about .6ms.

When you observe a logical 1, the light switch is on and it remains on for 1.2milliseconds. A millisecond

is 1/1000 of a second. When no data is being transmitted, the signal stays “high” (5 volts in our case).

You will also notice .6ms high pulses between the bit patterns. This allows the timing between pulses to

be precise. Without this precision, the microcontroller cannot decode the message!

One last point, the Arduino and Basic Stamps microcontrollers transmit the LSB first. This is called “Little

Endian”. The rules we are learning about are called protocols. They are agreed upon standards that

companies can use to standardize communication between devices. This applies to Bluetooth, wireless,

ethernet, and cellular standards.

Figure 8: Binary to Decimal Conversion

P a g e | 7

Decoding IR Streams: Example Oscilloscope Patterns
Let’s start with the

Channel Up button.

When it is pressed, it

acts as the FORWARD

button and it transmits

this pattern. Let’s try

and decode it.

 | |

 LSB(bit 0) MSB(bit 7)

Remember the LSB is sent first so in binary this is 0 0 1 0 0 0 0 = 16 in decimal. When the scope displays

a stream, the first bit is on the left and each bit after that shows up farther to the right. Think of the

horizontal scale as time. So, the first 7 bits (0000100) must be re-arranged so we can determine their

binary values (0010000).

Let’s try one more so

you can get the hang of

it. This pattern

represents the BACK

key or Channel Down.

The first 7 bits are sent

in the order of 1 0 0 0 1

0 0. But we need to

reverse their order. So,

this time the code is 0 0 1 0 0 0 1 = 17 in decimal.

The appendices that follow will serve as a reference as you learn to program your devices. Remember,

no two manufacurers use the same numbers for their keys, they use different protocols, and they do not

always tranmit bits using little endian. Some companies use “Big Endian” where the MSB is transmitted

first.

 0 0 0 0 1 0 0 1 0 0 0 0

 1 0 0 0 1 0 0 1 0 0 0 0``

P a g e | 8

APPENDIX A. Bit patterns for standard directional control
Scope images of the bit patterns for Channel Up/Down and Volume Up/Down. Remember, the bit on

the left is the LSB (Bit 0) so you must reverse the pattern to decode it. Ignore last 5 bits and read right-

to-left as you write down the bit values. Also, the bits that are low are the ones we decode. When the

signal is high (5VDC) no IR signal is being transmitted.

 0 0 0 0 1 0 0 = 0010 000

Channel UP Button

0010 000 = 16 Decimal

 1 0 0 0 1 0 0 = 0010 001

Channel DOWN Button

0010 001 = 17 Decimal

 0 1 0 0 1 0 0 = 0010 010

Volume UP Button

0010 010 = 18 Decimal

 1 1 0 0 1 0 0 = 0010 011

Volume DOWN Button

0010 011 = 19 Decimal

P a g e | 9

APPENDIX B. Sony IR codes for standard remote buttons

SONY IR REMOTE CODES for UCI Critters Project
Command Key BINARY STREAM Decimal Code

1 0000 000 0

2 0000 001 1

3 0000 010 2

4 0000 011 3

5 0000 100 4

6 0000 101 5

7 0000 110 6

8 0000 111 7

9 0001 000 8

0 0001 001 9

Enter 0001 011 11

SONY IR REMOTE CODES for UCI Critters Project

Channel UP 0010 000 16

Channel DOWN 0010 001 17

Volume UP 0010 010 18

Volume DOWN 0010 011 19

NOTES:

Bits are transmitted Little Endian

Logical 0 = .6ms (600us) on and .6ms off

Logical 1 = .12ms (1200us) on and .6ms off

All bits are separated by .6ms interval
We only need to test bits 0 & 1 to determine which button was pressed. Look at the
red bits in the gray box above. That represents the four combinations of 2 bits taken 2
at a time. Can you see why the 1-4 keys respond as well?

P a g e | 10

APPENDIX C. Microcontroller Code Examples for a Simple IR Controller

Parallax Basic Stamp 2 Version
' Control your Boe-Bot with an IR remote set to control a SONY TV
' with the 1-4 or CH+/- and VOL+/- keys.

'{$STAMP BS2}
'{$PBASIC 2.5}

time VAR Word(2) ' SONY TV remote variables.
CW CON 1300
CCW CON 1700
HALT CON 1500

DO ' Beginning of main loop.
 DO ' Wait for rest between messages.
 PULSIN 9, 1, time(0)
 LOOP UNTIL time(0) > 2000

 PULSIN 9, 0, time(0) ' Measure/store data pulses.

 PULSIN 9, 0, time(1)

 ' Decide which maneuver to execute depending on the combination

 ' of pulse durations stored in the first two pulse measurements.

 IF (time(1) < 1000) AND (time(0) < 1000) THEN

 GOSUB GoForward

 ELSEIF (time(1) < 1000) AND (time(0) > 1000) THEN

 GOSUB GoBack

 ELSEIF (time(1) > 1000) AND (time(0) < 1000) THEN

 GOSUB TurnRight

 ELSEIF (time(1) > 1000) AND (time(0) > 1000) THEN

 GOSUB TurnLeft

 ELSE

 GOSUB DoStop

 ENDIF

LOOP

GoForward:

 PULSOUT 13, CCW ' Forward

 PULSOUT 12, CW

 RETURN

GoBack:

 PULSOUT 13, CW ' Backward

 PULSOUT 12, CCW

 RETURN

TurnRight:

 PULSOUT 13, CCW ' Right rotate

 PULSOUT 12, HALT

 RETURN

TurnLeft:

 PULSOUT 13, HALT ' Left rotate

 PULSOUT 12, CW

 RETURN

DoStop:

 PULSOUT 13, HALT

 PULSOUT 12, HALT

 RETURN

END OF BS2 CODE

P a g e | 11

Basic Stamp 2 IR Wiring Setup for Oscilloscope

• Scope Settings: Channel A

o DC Coupling

o Vertical 2v/div

o Horizontal 2ms/div

o Trigger Mode: Pulse

o Auto Trigger -80mV trigger level

o Probe Pin 9 (after resistor)

• IR Sensor Bulge Side

o Left Signal 220Ω to pin 9

o Center VSS (Ground)

o Right VDD

Figure 9: Setup for Displaying IR Streams on Scope

P a g e | 12

Arduino UNO Version

/* PURPOSE:
 * DEMO HOW TO DETECT SONY REMOTE IR KEY CODES
 * See my comments in loop function below. You can use either decode method.
 * Entire 12 bits First byte codes
 * Channel Up = 144 16
 * Channel Dn = 145 17
 * Volume Up = 146 18
 * Volume Dn = 147 19

Using the IR receiver in your study group kit:

1. Place the IR module in a breadboard with the sensor facing you.
2. Connect a green wire from the leftmost pin to GND on Arduino.
3. Connect a RED wire from the center pin of the sensor to 5V on Arduino.
4. Connect another wire from the right pin to pin 2 of the Arduino. This is the signal pin.
5. Make sure you have the IRRemote library installed on your computer. I use ver 3.3 as of
this writing.

6. Save & upload your code
7. Open the serial monitor window. TOOLS | SERIAL MONITOR. Make sure to set baud rate to 9600.
8. Point your Sony remote towards the sensor and push the buttons. The button code
 should appear in the monitor window.
9. WRITE YOUR CODES DOWN AND INCLUDE THEM IN YOUR SKETCHES!!!
*/

//************* START CODE HERE ************

//---1. now add the library
#include <IRremote.h> //ver 3.3 5/14/2021

//---2. define our sensor data pin and read first byte
const byte IR_RECEIVE_PIN = 11;

void setup()
{
 //---3. open the serial port and monitor at 9600 baud rate.
 Serial.begin(9600);

 //---4. Start our IR receiver on the arduino. We pass in two arguments: pin# and system command
 // to ignore blinking the onboard LED when a message is received.
 IrReceiver.begin(IR_RECEIVE_PIN, DISABLE_LED_FEEDBACK);
}
void loop()

{

 //---if data is beig received then decode it, print to the monitor, and keeping listening for more!

 if (IrReceiver.decode())

 {

 //---use command to use first byte as described in my report

 Serial.println(IrReceiver.decodedIRData.command); //only the first byte!

 //---use this line to decode entire 12bits

 //Serial.println(IrReceiver.decodedIRData.decodedRawData); //to see entire stream

 IrReceiver.resume(); // Receive the next value

 }

}

